

1

Physical Prices API

User’s Manual

For Python

May 2024

2

Introduction
A key part of the data solutions provided by Fastmarkets are the various REST APIs designed to

provide data in a flexible, performant and secure way. For data license customers, these APIs

are ideal for retrieving and processing Fastmarkets data by their own services.

This document gives details of two of these APIs with examples of how they are typically used.

The APIs
The following public APIs are available for use to authorized customers:

➢ Fastmarkets Authentication API

This API is used to authenticate the calling service. It will also generate an access token

needed when calling other Fastmarkets APIs for authorization purposes.

➢ Fastmarkets Physical Prices API

Used to return current and historic physical prices as well as associated instrument data.

Fastmarkets Authentication API
All the Fastmarkets APIs use well established modern security standards. This includes the use

of OAuth 2.0, OpenID Connect and JSON Web Tokens.

Customers of Fastmarkets data will typically have their own services that will consume and

process data. As such, authentication based on a single user’s credentials are not appropriate.

Instead, a unique Service Key and Service Name is issued by Fastmarkets which can be used

when calling the Fastmarkets Authentication API to generate an Access Token. The returned

Access Token (in the form of a JSON Web Token) is then needed for any subsequent calls to

other Fastmarkets APIs (such as the Fastmarkets Physical Prices API) to verify that the calling

service has the necessary permissions to view the requested data.

Generating an Access Token

Using the provided Service Key and Service Name, a POST Connect Token request is required to

the Fastmarkets Authentication API as described in the example below. The response includes

the Access Token itself, an Expiry time (in seconds) and the type of Access Token (this will

always be of type ‘Bearer’).

3

Example Request:

Where service_name and service_key should be replaced by your credentials data Service

Name and Service Key accordingly.

Example Response:

Please note that the Access Token will expire. The expiry time is provided in the response. This

is by design. Depending on requirements, a new Access Token will need to be generated in one

or more of the following circumstances:

1. Before every request to an API that requires an Access Token (such as the Physical Prices
API) - This could prove inefficient if making frequent data requests but can suit stateless
processing.

2. When the current Access Token is close to expiry – The ‘expires in’ value returned with
Connect Token request provides the expiry period in seconds. Alternatively, decoding the
JSON Web Token (JWT) itself will reveal a parameter called ‘exp’ with a timestamp value
representing the expiry time.

3. On receiving a Status 401 (Unauthorized) response from an API

import requests # use requests library

import json # use json library

url = "https://auth.fastmarkets.com/connect/token"

payload = {

 'grant_type': 'servicekey',

 'client_id': 'service_client',

 'scope': 'fastmarkets.physicalprices.api',

 'serviceName': 'service_name',

 'serviceKey': 'service_key'

 }

header = {'Content-Type': "application/x-www-form-urlencoded"}

token_response = requests.post(url, data = payload, headers = header)

accessToken = json.loads(token_response.content)

{

 "access_token": "eyJhbGciOiJSUzI1NiIsImtpZCI6IjdjZTkyOTQ4NDk0ODRkMDM4YzQ0N.

..eEJkMWKgeY4vumE1RY-h4pC1CT6w",

 "expires_in":7200,

 "token_type":"Bearer"

}

4

Fastmarkets Physical Prices API
The Physical Prices API provides price values and associated instrument data for Fastmarkets

assessed prices. All price values are associated to instruments which uses a symbol as an

identifier.

For more on the specification of this API and to try it out, please refer to the API’s

documentation page (Swagger) here: https://api.fastmarkets.com/physical/v2/documentation

Authenticating

All Fastmarkets APIs require a valid Access Token to retrieve permissioned data. To generate an

Access Token, please refer to the Fusion Authentication API section above. The token is then

added to an Authorization header parameter using the ‘Bearer’ prefix. For example:

Authorization: Bearer eyJhbGciOiJSUzI1NiIsImtpZCI6IjdjZTkyOTQ4NDk0ODRkMDM4YzQ

Retrieving a single price

To return the most recently available assessed price for a specific instrument, the Prices

endpoint is used. In this example, the symbol ‘MB-AL-0004’ is used to return the latest available

price data for ‘Aluminium P1020A, in-warehouse Rotterdam duty-paid, spot $/tonne’ as of 2nd

March 2019.

In the response, low, mid and high price values are returned for the 1st of March 2019, as this

was the most recent assessment available for the specified date.

Example Request (Python):

url = "https://api.fastmarkets.com/Physical/v2/Prices"

query = {'symbols':'MB-AL-0004', 'dates':'2019-03-02'}

headers = {

 'Authorization': 'Bearer ' + accessToken.access_token,

 'cache-control': 'no-cache'

 }

req = requests.request("GET", url, headers=headers, data = query)

singlePrice = json.loads(req.content)

https://api.fastmarkets.com/physical/v2/documentation

5

Example Response (JSON):

If no value for the Dates parameter is included in the request, then the most recent price data is

returned. A value for the Symbols parameter is always required.

Retrieving multiple prices

It is also possible to request prices for multiple instruments and multiple dates in single request

using the Prices endpoint.

In the example request below, two different symbols and two different dates have been

requested. In the result, there will be two price results for each of the two instruments.

{

 "instruments": [

 {

 "firstDate": "1987-04-07T00:00:00+00:00",

 "lastDate": "2019-05-21T15:00:00+00:00",

 "prices": [

 {

 "date": "2019-03-02",

 "assessmentDate": "2019-03-01T16:00:12+00:00",

 "revision": 0,

 "low": 130,

 "mid": 135,

 "high": 140

 }

],

 "symbol": "MB-AL-0004"

 }

]

}

6

Example Request (Python):

Example Response (JSON):

{

 "instruments": [

 {

 "firstDate": "1987-04-07T00:00:00+00:00",

 "lastDate": "2019-05-21T15:00:00+00:00",

 "prices": [

 {

 "date": "2019-03-02",

 "assessmentDate": "2019-03-01T16:00:12+00:00",

 "revision": 0,

 "low": 130,

 "mid": 135,

 "high": 140

 },

 {

 "date": "2019-03-04",

 "assessmentDate": "2019-03-01T16:00:12+00:00",

 "revision": 0,

 "low": 130,

 "mid": 135,

 "high": 140

 }

url = "https://api.fastmarkets.com/Physical/v2/Prices"

query = {

 'symbols': ['MB-AL-0004', 'MB-AL-0006'],

 'dates': ['2019-03-02','2019-03-04']

 }

headers = {

 'Authorization': 'Bearer ' + accessToken.access_token,

 'cache-control': 'no-cache'

 }

req = requests.request("GET", url, headers=headers, data = query)

multiplePrices = json.loads(req.content)

7

],

 "symbol": "MB-AL-0004"

 },

 {

 "firstDate": "1995-07-05T00:00:00+00:00",

 "lastDate": "2019-05-22T15:42:17+00:00",

 "prices": [

 {

 "date": "2019-03-02",

 "assessmentDate": "2019-02-27T15:06:11+00:00",

 "revision": 0,

 . . . }]
}

Retrieving a range of prices

Using the Prices/History endpoint, it is possible to retrieve a series of prices over a specified

period. In this example, a request is made over a seven-day period (between 20th Feb 2019 to

27th Feb 2019). The response returns prices in descending order of date.

Example Request (Python):

url = "https://api.fastmarkets.com/Physical/v2/Prices/history"

query = {

 'symbols': 'MB-IR-0001',

 'fromDate': '2019-02-20',

 'toDate': '2019-02-27',

 'calendarType': 'Weekdays',

 'carryForward': True

 }

headers = {

 'Authorization' : 'Bearer ' + accessToken.access_token,

 'cache-control' : 'no-cache'

}

req = requests.request("GET", url, headers=headers, data = query)

priceRange = json.loads(req.content)

8

Example Response (JSON):

Retrieving average prices

Periodically, average prices for many Fastmarkets instruments are published. These are

calculated values based on the underlying assessment prices over a period of a week, month or

year.

Both the Prices and Prices History endpoints accept an input parameter called Price Calculation

Type. There are several valid values for this parameter, the most common of which are:

• WeeklyAverage
• MonthlyAverage

{

 "instruments": [

 {

 "firstDate": "1987-01-06T00:00:00+00:00",

 "lastDate": "2019-05-22T09:17:04+00:00",

 "prices": [

 {

 "date": "2019-02-27",

 "assessmentDate": "2019-02-27T09:29:33+00:00",

 "revision": 0,

 "low": 1410,

 "mid": 1460,

 "high": 1510

 },

 {

 "date": "2019-02-26",

 "assessmentDate": "2019-02-22T10:36:29+00:00",

 "revision": 0,

 "low": 1410,

 "mid": 1460,

 "high": 1510

 },

 {

 "date": "2019-02-25",

 "assessmentDate": "2019-02-20T09:31:14+00:00",

 "revision": 0,

 "low": 1409,

. . .}]

}

9

• YearlyAverage

If no Price Calculation Type is specified, then the actual assessment value is returned.

NB: To find out what Price Calculation Types are available for a given instrument, use the

Instrument endpoint (see section: Retrieving instruments data)

Example Request (Python):

Example Response (JSON):

{

 "instruments": [

 {

 "firstDate": "2008-01-31T12:00:00+00:00",

 "lastDate": "2019-04-30T12:00:00+00:00",

 "prices": [

 {

 "date": "2019-03-02",

 "assessmentDate": "2019-02-28T12:00:00+00:00",

 "revision": 0,

 "low": 125,

 "mid": 130.32,

 "high": 135.63

 }

],

 "symbol": "MB-AL-0004"

 }

]

}

url = "https://api.fastmarkets.com/Physical/v2/Prices/MonthlyAverage"

query = {'symbols':'MB-AL-0004',

 'dates':'2019-03-02'}

headers = {

 'Authorization': 'Bearer ' + accessToken.access_token,

 'cache-control': 'no-cache'

}

req = requests.request("GET", url, headers=headers, data = query)

monthlyAveragePrice = json.loads(req.content)

10

Optional price data fields

When requesting price data, not all available data associated to a price is returned by default.

This is by design to help reduce the size of the response if requesting a large quantity of

records.

However, this additional data can be returned by using the Fields input parameter. Here is a list

of the available optional fields that can be added to the request:

• apprisalPrice - Value representing whether undergoing an appraisal process at the point of
assessment (Boolean)

• pricingRationale - Description of the rationale behind the assessment made by the Price
Reporter (string)

• assessmentPeriod - Description of the assessment period when returning average price
calculations types (string)

• lowChangeSincePrevious - Difference between low price value of previous assessment and
low price value of this assessment (number)

• midChangeSincePrevious – (As above but for mid price value)

• highChangeSincePrevious – (As above but for high price value)

• lowChangeSincePreviousProportion - Difference between low price value of previous
assessment and low price value of this assessment as a decimal value. 1 represents a
change of 100%, -1 represents a change of -100% (number)

• midChangeSincePreviousProportion – (As above but for mid price value)

• highChangeSincePreviousProportion – (As above but for high price value)

11

Example Request (Python):

Retrieving instrument data

All physical prices relate to an associated instrument. The instrument consists of various

attributes, all of which are available to view using the Instrument endpoint.

If no input parameters are provided, all instruments that the calling service are entitled to see

are returned. The Symbols input parameter can be used return specific instruments (see

example).

Example Request (Python):

url = "https://api.fastmarkets.com/Physical/v2/Prices"

query = {

 'symbols':'MB-AL-0004',

 'fields': ['PricingRationale','MidChangeSincePrevious']

}

headers = {

 'Authorization': 'Bearer ' + accessToken.access_token,

 'cache-control': 'no-cache'

}

req = requests.request("GET", url, headers=headers, data = query)

priceWithOptionalFields = json.loads(req.content)

url = "https://api.fastmarkets.com/Physical/v2/Instruments"

query = {'symbols':'MB-STS-0236'}

headers = {

 'Authorization': 'Bearer ' + accessToken.access_token,

 'cache-control': 'no-cache'

}

req = requests.request("GET", url, headers=headers, data = query)

instrumentMetadata = json.loads(req.content)

12

Example Response (JSON):

By default, many of the attributes returned are ID values (for example: Commodity ID and

Currency ID). To return the full name of these attributes, they need to be included in the Fields

input parameter as they are optional.

These optional fields include:

• Commodity
• Location
• Currency
• UnitOfMeasure
• Incoterm
• Source

In this example, a request is made to include Commodity and Currency names in the response:

{

 "instruments": [

 {

 "productId": "Broker 304 turnings",

 "description": "New York 304 turnings, broker buying, US cents per

pound",

 "descriptionShort": "New York 304 turnings, broker buying, US c/lb",

 "commodityId": "STS",

 "priceType": "Price",

 "locationId": "USA-NY",

 "currencyId": "USd",

 "unitOfMeasureId": "Pound",

 "incotermId": "DLVD",

 "launchDate": "2015-10-20",

 "frequency": "Weekly",

 "sourceId": "AMM",

 "status": "Active",

 "priceCalculationTypeIds": [

 "WeeklyAverage",

 "MonthlyAverage",

 "YearlyAverage"

],

 "symbol": "MB-STS-0236"

 }

]

}

13

Example Request (Python):

Retrieving reference data

The References endpoint is useful for obtaining details of all valid values for a particular field

(such as currency codes) or to obtain the full name a specific reference value.

The following reference data is available using this endpoint:

• Currency
• UnitOfMeasure
• PriceCalculationType
• Incoterm
• Commodity
• Source

url = "https://api.fastmarkets.com/Physical/v2/Instruments"

query = {

 'symbols': 'MB-STS-0236',

 'fields': ['Commodity', 'Currency']

}

headers = {

 'Authorization': 'Bearer ' + accessToken.access_token,

 'cache-control': 'no-cache'

}

req = requests.request("GET", url, headers=headers, data = query)

instrumentMetadataOptional = json.loads(req.content)

14

Example Request (Python):

Example Response (JSON):

url = "https://api.fastmarkets.com/Physical/v2/References"

query = {'types': 'Currency'}

headers = {

 'Authorization': 'Bearer ' + accessToken.access_token,

 'cache-control': 'no-cache'

}

req = requests.request("GET", url, headers=headers, data = query)

currencyReferenceData = json.loads(req.content)

{

 "references": [

 {

 "type": "Currency",

 "items": [

 {

 "sign": "¥",

 "id": "CNY",

 "description": "China Yuan"

 },

 {

 "sign": "$",

 "id": "ARS",

 "description": "Argentine peso"

 },

 . . .

]

}

